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ABSTRACT
In this work, we design, DigitalPIM, a Digital-based Processing
In-Memory platform capable of accelerating fundamental big data al-
gorithms in real time with orders of magnitude more energy efficient
operation. Unlike the existing near-data processing approach such
as HMC 2.0, which utilizes additional low-power processing cores
next to memory blocks, the proposed platform implements the entire
algorithm directly in memory blocks without using extra processing
units. In our platform, each memory block supports the essential
operations including: bitwise operation, addition/multiplication, and
search operation internally in memory without reading any values
out of the block. This significantly mitigates the processing costs of
the new architecture, while providing high scalability and parallelism
for performing the extensive computations. We exploit these essen-
tial operations to accelerate popular big data applications entirely
in memory such as machine learning algorithms, query process-
ing, and graph processing. Our evaluations show that for all tested
applications, the performance can be accelerated significantly by
eliminating the memory access bottleneck.
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1 INTRODUCTION
We live in a world where technological advances are continually cre-
ating more data than what we can cope with. With the emergence of
the Internet of Things, sensory and embedded devices will generate
massive data streams demanding services that pose huge technical
challenges due to limited device resources. Today IoT applications
typically analyze raw data by running machine learning algorithms
in data centers. Sending all the data to the cloud for processing is
not scalable, cannot guarantee a real-time response, and is often
not desirable due to privacy and security concerns. Much of IoT
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Figure 1: The list of supported operations and (b) the list of
applications accelerated by the proposed DigitalPIM platform.

data processing will need to run at least partly on the devices at
the edge of the internet. However, running data-intensive workloads
with large datasets on traditional cores results in high energy con-
sumption and slow processing speed due to a large amount of data
movement between memory and processing units. Although new
processor technology has evolved to serve computationally complex
tasks in a more efficient way, data movement costs between pro-
cessor and memory still hinder the higher efficiency of application
performance. In addition, applications in this area involve diverse
data analytic procedures which needs to be significantly accelerated
while handling a large amount of data. Our work seeks to build
systems capable of responding to the diverse needs in real time with
orders of magnitude more energy efficient operation.

In this work, we propose, DigitalPIM, a novel Digital-based Pro-
cessing In-Memory (PIM) platform which accelerates the fundamen-
tal operations and diverse data analytic procedures. The DigitalPIM
supports fundamental block-parallel operations inside memory, e.g.,
addition, multiplication or bitwise computations. This capability is
implemented on a crossbar memory which stored data point of an
application. Since a large amount of data is not required to be sent
to the processing cores for computation, the performance can be
accelerated significantly by avoiding the memory access bottleneck.
To fully get the advantage of DigitalPIM for popular data processing
procedures and machine learning algorithms, we design specialized
accelerator. Our platform can process several applications including
machine learning, graph and query processing entirely in-memory
without using any processing cores.

2 DIGITAL-BASED PIM
2.1 DigitalPIM Overview
In this work, we present processing in-memory architecture to en-
able hardware accelerations for popular big data applications. We
exploit a conventional crossbar memory to enable essential opera-
tions in memory. Figure 1a shows the list of operations supported by
DigitalPIM platform. The first supported operation by DigitalPIM is
bitwise operation. In contrast to prior works that compute bitwise
operation on the sense amplifier of each memory block [1], our
design supports bitwise operations internally in memory without
even reading the values out of the block. Prior work enabled the
bitwise operation by exploiting the analog/resistive characteristic of
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Figure 2: n-input NOR implementation in (a) a row and (b) a
column [3].memristor devices, which causes the internal device switching [2, 3].
Our platform extends the bitwise operation, e.g., NOR, to implement
addition and multiplication in memory. These operations are enabled
by performing a series of bitwise operations. Although DigitalPIM
addition and multiplication are much slower than CMOS logics, the
high parallelism of the PIM operations results in a higher overall Dig-
italPIM throughput as compared to the CMOS-based logics. In other
words, DigitalPIM performs the computation in a row-parallel way,
resulting in about 1K parallel addition/multiplication on memory
with 1K rows. DigitalPIM also supports search operation internally
in memory. During the search, blocks configured as content address-
able memory (CAM). Conventionally CAM blocks are only used
for exact matching. Here, we extend the search operation such that
CAMs can also find a row with the nearest Hamming distance or the
nearest absolute distance with query data.

DigitalPIM exploits the PIM-supported operations to accelerates
diverse data-intensive applications partially or entirely in-memory.
Figure 1b shows the list of applications accelerated by our proposed
DigitalPIM architecture. Our platform can accelerate different ma-
chine learning including deep neural networks, AdaBoost, k-nearest
neighbor applications entirely in memory without using any process-
ing cores. DigitalPIM can also accelerate graph and query processing
algorithms, along with a set of Hyperdimensional (HD) computing
algorithms that support classification on a wide range of data types.

2.2 DigitalPIM Supported Operations
Bitwise Operations: We exploit the analog characteristic of mem-
ristor devices to support bit-parallel or row-parallel bitwise operation
internally in memory. Work in [2, 4] showed that crossbar memory
can internally support NOR-based operation between the N selected
rows or columns of the memory, as shown in Figure 2. This opera-
tion happens by activating N columns (rows) of the memory at the
same time and connecting the target column (row) which store the
results of NOR operation to a zero voltage. This enables the internal
NOR operation between the selected columns (rows) to be written
directly on the selected output column (row).

Our work, FELIX [3], exploits the bipolar nature of the voltage
controlled ReRAM devices to enable NOR, NOT, Min, NAND, and OR
in a single cycle in crossbar memory. The benefits from FELIX
are muti-fold. Not only it is 1.86× faster and 2.21× more energy
efficient but also requires 1.68× lower memory as compared to the
fastest digital PIM technique. The addition and multiplication are
supported in crossbar memory by performing a series of sequential
FELIX operations. In FELIX, multiple NOR/NAND gates are com-
bined together to implement any logic operation, including but not
limited to XOR, majority, and implication. For example, AND op-
eration can be implemented with two sequential NAND operations.
In a different approach to PIM, researchers have tried to exploit
sense amplifiers to read out data locally and process it. Our works

in MPIM [1] and LUPIS [5] modified memory sense amplifiers to
enable bitwise operations like AND, OR, XOR, etc. The sense am-
plifier based techniques trade energy and area for better performance
as compared to a relatively slower PIM execution.

Addition/Multiplication: The basic logic functions supported
by MAGIC and FELIX can be extended to implement addition and
multiplication. An implementation of addition proposed by FELIX
combines XOR and majority operations [3]. A 1-bit adder can be
represented by,

S = A⊕B⊕Cin, (1a)

Cout = A.B+B.C+C.A =Ma jNA,B,Cin, (1b)

where A, B, and Cin are 1-bit inputs while S and Cout are the gen-
erated sum and carry bits respectively. Here, S is implemented as
two serial in-memory XOR operations. Cout , on the other hand, can
be executed by inverting the output of . Hence, S takes a total of 4
cycles and 2 additional memristors, while Cout needs 2 cycles and
2 additional memristors. Further, multiplication is implemented by
multiple additions and shift operations. A naive implementation of
multiplication would result in a lot of data movement due to shifts.
Our work in [6] proposed the first digital PIM-based multiplication.
It dealt with the data movement overhead by sub-dividing memory
blocks using interconnects which allowed bit-shifts without reading
out data and also accelerated PIM multiplication. The work in [7]
takes another approach where it does not accelerate an individual
multiplication significantly but makes it highly parallelizable. Work
in [8] exploited DigitalPIM operations to support floating point op-
eration in memory and extended them to accelerate deep neural
network training.

Search: Our work, MPIM [1], supports a block-serial row par-
allel Hamming distance based operations. We proposed ReCAM
[9], which can be configured to perform the closest distance search
operation inside the memory. Although it does not implement binary
distance search but it is a close approximation. However, many ap-
plications require a binary distance based comparison. We proposed
NVQuery [10, 11] which enabled, for the first time, exact binary
distance search in memory. It achieved it by using smart voltage
application techniques to exploit the differential discharging time
of capacitance. We used it to enable complex functions, including
but not limited to sorting, compare, aggregation, and prediction.
These functions have huge time complexities when implemented on
traditional hardware.

3 MACHINE LEARNING ACCELERATORS
In this section, we describe how we fully leverage the advantages
of DigitalPIM for large scale data processing and machine learn-
ing applications by designing specialized PIM accelerator blocks.
In machine learning, we look at four important classes of algo-
rithms: hyperdimensional computing, deep learning, AdaBoost, and
k-Nearest Neighbor algorithms.

3.1 Hyperdimensional Computing Acceleration
The brain’s circuits are massive in terms of numbers of neurons
and synapses, suggesting that large circuits are fundamental to the
brain’s computing. Brain-inspired hyperdimensional (HD) comput-
ing explores this idea by looking at computing with ultra-wide words
high-dimensional vectors, or hypervectors [12–14]. Figure 3a shows
the overview structure of HD computing for classification example.
The first step is to encode data into hypervectors. The goal of the
encoder is to map key input data to a single hypervector and then
combine these for all of the data points in a class to generate a unique
hypervector representing each class. Each class hypervector is a long
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Figure 3: (a) overview of HD computing during classification.
(b) The details of the encoding functionality in HD comput-
ing [3].

vector with D dimension with binary (0, 1) elements. Associative
memory stores the trained hypervectors for all classes. Once the data
is encoded and clustered into appropriate categories, various types
of operations can be implemented, but at the heart of all implemen-
tations is a search for a category match. HD classifies an unknown
input data by encoding it to a hypervector using the same encoder
used for training. The query hypervector has binary elements and the
same dimensions as the class hypervectors. Then, this hypervector
is broadcast to the associative memory module for comparing with a
set of learned class hypervectors. The associative memory returns
the closest match. We exploit such architectural insights to develop
scalable and efficient encoder and associative memories that can
accelerate HD computing as discussed next.

Encoder: Figure 3b shows the functionality of the encoding mod-
ule in HD computing. HD encoder generates m random hypervectors
representing each feature level (L1,L2, · · · ,Lm). These hypervectors
use only binary elements, with information randomly distributed
over all D dimensions (e.g. D = 10,000). To consider the impact of
feature position, HD computing assigns a unique position hypervec-
tors. For a feature vector with n elements, HD generates n P position
hypervectors. The P is another randomly generated hypervector with
the same dimensionality as the level hypervector, D, and specifies
the effect of feature position in the final hypervector. In this way,
the hypervectors are combined together using element-wise XOR of
the position and level hypervectors, and then summing the result-
ing hypervectors over all features. We map all these operations in
PIM-enabled memory [3]. We perform n PIM XORs (one for each
ID) and generate n outputs. For the first n iterations, we select one
ID and XOR it with one of the Ls in every iteration. For a pair of
ID and L, PIM XOR can be computed in parallel for all dimensions.
We then add the generated n elements serially, three bits at a time.
If X1, X2, ... Xn are the vectors to be added together, we first add
X1, X2, and X3 to generate S1 and C1. We then add X4, X5, and
{C1, S1} to generate S2 and C2, and so on till we have added all
XOR results. The addition of n 1-bit elements results in an output
with p = �log2n� bits. We implement this PIM-based HD encoding
while ensuring optimal storage, whose details can be found in [3].

Associative memory: is in charge of storing all class hyper-
vectors. Our design stores all available classes in an associative
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Figure 4: The overview of the proposed DNN acceleration
framework [16].

memory as a trained HD model. In inference, when an unknown
input digit is loaded into the system, our design uses a similar en-
coding to generate the query hypervector. Then, associative memory
finds the closest match between a set of learned hypervectors and
a query hypervector by using a distance metric. Depending on the
data representation, HD can use different similarity metrics. Here
we consider Hamming distance to find the most similar class. The
state-of-the-art associative memories are not able to compare vectors
with dimensionality in thousands [9, 15]. They also lack techniques
for uniformly tolerating errors in any vector component and hence
cannot efficiently exploit the holographic feature of hypervectors.
Further, most of them are implemented as a content addressable
memory (CAM) and so are not able to find the minimum distance.
We designed new architectures for hyperdimensional associative
memory that can facilitate energy-efficient, fast, and scalable search
operations [13]. Our proposed CAM exploits the analog discharging
current of different CAM rows to identify a CAM row with the
minimum mismatches with the query hypervector. In other words,
our design uses a tree-based structure of a Loser-Takes-All (LTA)
blocks to identify a CAM row (a class) with the minimum Hamming
distance. These analog HD designs linearly scale with the number of
dimensions in the hypervectors while exploring a large design space
at orders of magnitude higher efficiency [13].

3.2 Deep Neural Network Acceleration:
We present a novel PIM accelerator for DNNs that supports all DNN
functionality in memory [16]. Figure 4 shows an overview of the
proposed framework. Our framework first analyzes the computa-
tion flow of a DNN model and encodes key DNN operations for a
specialized PIM-enabled accelerator. It identifies the representative
parameters, i.e., weights and input values, for each neuron using clus-
tering algorithms. The other key operations, like activation functions,
are also modeled to enable in-memory processing. The key idea
underlying our design is that even though the operations of a DNN
are continuous, they can be approximated as step-wise functions
without losing the quality of inference. Thus, we can create lookup
tables that store the finite pre-computed values, and map them into
specialized memory blocks capable of computation.

Prior work proposed PIM-based neural network accelerators
which keep the input data and trained weights inside memory [17,
18]. For example, the work in [18] showed that memristor devices
can model multiplications and additions for each neuron. Authors of
[18] store trained weights of each neuron as device resistance values,



and pass the current converted from digital values in a similar way
to spiking neuromorphic computing [19]. Although this approach is
a first step toward using PIM for DNN acceleration, it has two major
issues: (i) it only supports two in-memory functions while other
important operations, such as activation functions, are implemented
using CMOS-based logics, which would make the fabrication expen-
sive. (ii) Analog to Digital Converters (ADCs) and Digital to Analog
Converters (DACs) do not scale as memory device technology does,
although they take 61% of power consumption [18]; therefore, the
analog-based computation approach would not be an appropriate
solution to design PIM-based DNN accelerators.

Our proposed design [16] addresses the key issues present in
prior work. Our framework has two components: a software DNN
composer, and a hardware accelerator (Shown in Figure 4). The role
of the DNN composer is to convert each neural network operation
into tables which can be stored in the accelerator memory blocks
for processing in memory. In an offline stage, starting with a given
DNN model, the DNN composer analyzes weights and inputs of
each neuron and generates a new DNN model which is compatible
with the proposed PIM-based accelerator. The newly constructed
DNN model is repeatedly revised through multiple retraining pro-
cedures. The final model is stored into the accelerator for online
inference. Our framework supports three layers of popularly used for
designing DNNs: fully-connected, convolution, and pooling layers.
We group the computation tasks of the networks into four operations:
multiplication, addition, activation function, and pooling.

Considering the model of a single neuron, our approach works
based on the encoded input/weight [16], since the DNN composer
selects the best representatives inputs/weights by analyzing the net-
work. Therefore, the multiplication can be implemented by simply
accessing the pre-evaluated multiplication values. Then, the results
of multiplication can locally accumulate in memory without using
any processing cores. Our design approximately models the acti-
vation function using a lookup table. Finally, we utilize another
lookup table with a similar structure to encode the output of the
activation function. We exploit the fact that the weights of a network
are computed during testing. These constant weights can be pre-
processed and encoded in a way suitable for in-memory processing.
Since pre-processing is done only once, its latency is negligible in
comparison to the speedup provided during the testing phase. Our
evaluation shows that our approach [16] achieves 68.4×, 49.5×
energy efficiency improvement and 48.1×, 10.9× speedup as com-
pared to ISAAC [18] and PipeLayer [20], the state-of-the-art DNN
accelerators, while ensuring less than 0.5% of quality loss.

3.3 Adaptive Boosting Acceleration
One of the methods for classification is to exploit decision rules
which are automatically generated by learning algorithms such as
ID3, C4.5, and CART [21]. The simple decision rules and trees can
be combined to create more accurate and sophisticated decisions
with meta-learning algorithms. AdaBoost (Adaptive Boosting) is
one of the best meta-learning algorithms. In our previous work, we
designed a novel hardware accelerator, which accelerates the deci-
sion rule computations inside memory for visual object recognition
tasks [22]. The proposed design accelerates both the image feature
extraction and boosting-based learning algorithm, which are key
subtasks of the state-of-the-art image recognition approaches. We
show in [22] that our design successfully performs practical im-
age recognition tasks, including text, face, pedestrian, and vehicle
recognition with 0.3% of accuracy loss due to approximation.

Figure 5: AdaBoost classification accuracy.

Unlike the previous work that relies on the existence of learning
models trained offline, as a part of this work we design a new train-
ing algorithm for general classification problems and accelerate it
by leveraging PIM. The key idea is that the training procedure of
the decision trees can be decomposed into two steps: i) generating
multiple candidates of decision rules, and ii) evaluating the expected
accuracy of each decision rule to find the optimal rule. Evaluating a
decision rule can be implemented using the similarity search opera-
tions that the PIM technique supports. Thus, by mapping multiple
memory blocks for each decision candidate, we can perform the
evaluation procedure in a block-parallel way, thus quickly identify-
ing the best rule. To verify that our classification method is able to
handle general classification problems, we implemented our idea
in software and conducted an initial analysis by classifying human
activities from smartphone-based sensors. As shown in Figure 5,
the modified AdaBoost training method can create the first decision
tree with 92% accuracy, and by combining multiple decision rules
(on x-axis), we can further increase the accuracy by 98% for human
activity classification.

3.4 K-Nearest Neighbor Acceleration
Nearest neighbor search problem arises in numerous fields of ap-
plications, including pattern recognition, statistical classification,
biology, computer vision, etc. The nearest search computation is
highly parallelizable for datasets on the order of tens of megabytes.
Running analysis of more massive datasets on existing general pur-
pose processors results in significant performance overhead due to a
large number of data movements across the memory hierarchy. For
example, to process 1 billion candidate points, one query needs 150
GFLOPs computation and 500G of data communication [23]. We
propose to design a K-Nearest Neighbor accelerator [24] consisting
of ternary content addressable memory (TCAM) blocks which en-
able in-memory nearest search. Our design exploits dynamic voltage
scaling and analog detector circuitry to find kNN data based on the
Hamming distance. It overcomes energy and performance issues
in traditional computing systems by utilizing multiple TCAMs to
search for the nearest neighbor data in parallel. We also design a
new search-based accelerator which supports the nearest search with
different distance metrics. The proposed memory is a configurable
architecture which could take any similarity metric.

4 GRAPH PROCESSING & DATABASE
ACCELERATOR

We have also used PIM to accelerate graph and query processing
algorithms completely in-memory without using any processing
cores. In the following, we explain the details of the different design
implementation.



Figure 6: The architecture overview of PIMgraphAssist and
PIMgraphAccel. [30]

4.1 Graph Processing Acceleration
Large-scale graph processing is becoming more and more important
in the big data era. Framework-based models are widely used to
represent most graph processing applications which run on different
computing platforms. However, such large-scale graph applications
are not handled efficiently by conventional architecture because
of the irregular structure of graph data. For instance, widely used
message passing vertex-centric model [25] has random memory ac-
cess patterns because the destination of each message depends on
the structure of the graph which is very irregular. Several acceler-
ators have been proposed to improve the memory performance of
hardware when processing graph applications. For instance, Tesser-
act [26] utilizes near-data computing based on 3D DRAM to build
a scalable architecture for efficiently processing message-passing
based graph applications. GraphPIM [27] offloads synchronization
operations to memory to reduce the overhead of atomic operations.
However, the inefficient data movement still exists in all these works
because most operations are handled by processing cores. There
are also some customized accelerators for graph processing, like
Graphicionado [28] and work done by Ozdal et al. [29]. These ASIC
designs reduce the impact of random memory accesses by special on-
chip memory architectures which adds a lot of hardware complexity
and does not scale well with larger graph data sizes. In contrast, we
plan to utilize novel PIM technologies to minimize the inefficiency
caused by the conventional memory hierarchy in graph processing.
Specifically, we propose two different accelerators for graph pro-
cessing: a PIM-based accelerator assistant for vertex-centric graph
processing, and a general graph processing accelerator which trans-
lates the whole graph application into in-memory operations with
high-degree parallelism.

PIMgraphAssist: Our proposed accelerator assistant is a hetero-
geneous memory component added in the conventional memory
hierarchy. PIMgraphAssist consists of an on-chip buffer and an off-
chip PIM memory as shown in Figure 6. The off-chip PIM memory
has an associative memory and a normal memory. The associative
memory supports fast in-memory search operations and stores meta-
data of generated messages of application, while the normal memory
stores contents of messages. For each message processed in the
application, we write the message into the off-chip memory with-
out accessing conventional memory hierarchy (including on-chip
caches). The meta-data table stores an entry for each message, and
each entry consists of source vertex, the destination vertex, and the
address of message in the normal memory. Then, the accelerator
sorts all the messages based on the order that the program requires
by utilizing efficient associative searches in the meta-data table. The

sorting process generates a pointer array and a two-level prefetching
scheme is designed to efficiently send sorted results to the on-chip
buffer. Specifically, PIMgraphAssist uses a streaming prefetching
when accessing the pointer array and an indirect prefetching for
each pointer fetched. The performance gain of our proposed PIM
accelerator is due to two reasons: the random memory access will
no longer cause high cache miss rates because all corresponding
memory accesses are directly forwarded to PIM-based accelerator,
and the processor can prefetch the sorted messages which maximize
the memory bandwidth. Our design can be used for existing message
passing based graph processing software frameworks by introducing
memory load and store API for all messages generated.

PIMgraphAccel: Our PIM-based accelerator maps each phase
of graph processing to in-memory operations by leveraging a large
amount of processing memory blocks that can compute simulta-
neously. A typical vertex-centric graph processing framework has
three phases: process, reduce and apply. In the process phase, all
active vertices process messages based on their current application-
specific status data and edge information. Then, all vertices receiving
messages collect the message received and reduce them into a new
temporary value based on an application-specific function during the
reduce phase. In the apply phase, each vertex updates its status data
based on the computed temporary values. In such a framework, there
is a great potential of parallelism which cannot be fully exploited
by conventional architecture because of data movement and an in-
sufficient number of processing cores. For example, all operations
during the process phase can be handled simultaneously. Further-
more, reduce and apply operations on different vertices can also
be parallelized because there is no data dependency. Based on this
observation, we design a graph processing accelerator PIMgraphAc-
cel, by leveraging PIM architecture supporting various operations.
Each function unit has a heterogeneous PIM architecture handling
different tasks by PIM blocks. Specifically, we store the application-
specific property (e.g., distance value in single-source-shortest-path)
in PIM blocks supporting normal PIM operations like addition and
bit-wise operations. These PIM blocks can compute several prop-
erties stored in the same row by one PIM command. In addition
to row-level parallelism, different PIM blocks can perform com-
putations simultaneously to provide block-level parallelism. We
utilize PIM blocks to enable fast associative search to accelerate
meta-data look-up in graph processing, like fetching active vertices
list. Furthermore, we design several techniques to maximize the
parallelism of PIM operations. PIMgraphAccel utilizes in-memory
associative searches to schedule computations which can be paral-
lelized during run-time. A new circuit design is proposed to enable
parallel in-memory compare-and-swap (CAS) operations. We ex-
pect to significantly improve the performance of framework-based
graph processing application by utilizing extensive parallelism and
efficient in-memory data movements. To extend the lifetime of the
proposed accelerator, we also design an endurance management
mechanism specific to graph processing to evenly distribute write
operations to different NVM parts.

4.2 Query Processing Acceleration
Data management systems (DMS) are used for collecting and an-
alyzing large amounts of data for web applications and end users.
The execution time of DMS queries increases at least linearly and
sometimes exponentially as more records are stored on a server due
to hardware and software limitations. Our recent work proposed
a non-volatile memory-based query processing accelerator, called
NVQuery [10], that supports a wide range of query functionalities



including aggregation functions, prediction functions, bitwise opera-
tions, addition, exact, and nearest distance search operations. Our
experimental evaluation using common SQL queries shows that, as
compared to the state-of-the-art query accelerators [31], NVQuery
can achieve 26.2× energy-delay product improvement while provid-
ing similar accuracy. However, it does not support some commonly
used query functions.

We also proposed NVQuery+ [11] that support different types of
functions which are costly to process on conventional core including:
Between and Join which are used frequently in a query system.
These functions are very costly to compute on conventional systems.
On the other hand, NVQuery+ exploits its in-memory architecture
to accelerate three different types of Joins, namely inner, right, and
left, efficiently. We enable these extra functionalities by changing
the memory structure to support functionalities such as sort and
in-memory addition. Furthermore, our design support two types
of parallelization in memory: row level parallelism, which allows
multiple additions performs in a single memory block and block-
level parallelism which increases the overall throughput of PIM. In
addition, we extend the idea of NVQuery+ to approximate query
processor by applying voltage overscaling on the memory block and
enabling approximate in-memory multiplication. In this mode, the
query operations can be implemented in an approximate mode within
a controllable level of accuracy. This design adaptively balances the
level of energy efficiency and quality of computation based on the
accuracy requirement.

5 CONCLUSION
Running data-intensive workloads with large datasets on traditional
cores results in high energy consumption and slow processing speed
due to a large amount of data movement between memory and pro-
cessing units. In this work, we built a platform capable of responding
to our needs in real time with orders of magnitude more energy ef-
ficient operation. We propose a Processing In-Memory platform
which accelerates fundamental operations and diverse data analytic
procedures. Instead of sending a large amount of data to the pro-
cessing cores for computation, our platform performs a large part
of computation tasks inside the memory, thus the application per-
formance can be accelerated significantly by avoiding the memory
access bottleneck. Our platform accelerates general real-world big
applications including machine learning applications, graph process-
ing, and query processing.
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